Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Nat Cell Biol ; 26(3): 450-463, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38326554

RESUMO

Memory CD8+ T cells play a crucial role in infection and cancer and mount rapid responses to repeat antigen exposure. Although memory cell transcriptional programmes have been previously identified, the regulatory mechanisms that control the formation of CD8+ T cells have not been resolved. Here we report ECSIT as an essential mediator of memory CD8+ T cell differentiation. Ablation of ECSIT in T cells resulted in loss of fumarate synthesis and abrogated TCF-1 expression via demethylation of the TCF-1 promoter by the histone demethylase KDM5, thereby impairing memory CD8+ T cell development in a cell-intrinsic manner. In addition, ECSIT expression correlated positively with stem-like memory progenitor exhausted CD8+ T cells and the survival of patients with cancer. Our study demonstrates that ECSIT-mediated fumarate synthesis stimulates TCF-1 activity and memory CD8+ T cell development during viral infection and tumorigenesis and highlights the utility of therapeutic fumarate analogues and PD-L1 inhibition for tumour immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Viroses , Humanos , Carcinogênese/genética , Carcinogênese/metabolismo , Transformação Celular Neoplásica/metabolismo , Regiões Promotoras Genéticas , Viroses/metabolismo
2.
BMC Cancer ; 24(1): 239, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383334

RESUMO

PURPOSE: The purpose of this study was to explore the expression and potential mechanism of hsa_circ_0005397 in hepatocellular carcinoma progression. METHODS: Quantitative reverse transcription-polymerase chain reaction(qRT-PCR) was used to measure the expression level of hsa_circ_0005397 and EIF4A3 from paired HCC tissues and cell lines. Western Blot (WB) and immunohistochemistry (IHC) were used to verify the protein level of EIF4A3. The specificity of primers was confirmed by agarose gel electrophoresis. Receiver Operating Characteristic (ROC) Curve was drawn to analyze diagnostic value. Actinomycin D and nuclear and cytoplasmic extraction assays were utilized to evaluate the characteristics of hsa_circ_0005397. Cell Counting kit-8 (CCK-8) and colony formation assays were performed to detect cell proliferation. Flow cytometry analysis was used to detect the cell cycle. Transwell assay was performed to determine migration and invasion ability. RNA-binding proteins (RBPs) of hsa_circ_0005397 in HCC were explored using bioinformatics websites. The relationship between hsa_circ_0005397 and Eukaryotic Translation Initiation Factor 4A3 (EIF4A3) was verified by RNA Binding Protein Immunoprecipitation (RIP) assays, correlation and rescue experiments. RESULTS: In this study, hsa_circ_0005397 was found to be significantly upregulated in HCC, and the good diagnostic sensitivity and specificity shown a potential diagnostic capability. Upregulated expression of hsa_circ_0005397 was significantly related to tumor size and stage. Hsa_circ_0005397 was circular structure which more stable than liner mRNA, and mostly distributed in the cytoplasm. Upregulation of hsa_circ_0005397 generally resulted in stronger proliferative ability, clonality, and metastatic potency of HCC cells; its downregulation yielded the opposite results. EIF4A3 is an RNA-binding protein of hsa_circ_0005397, which overexpressed in paired HCC tissues and cell lines. In addition, expression of hsa_circ_0005397 decreased equally when EIF4A3 was depleted. RIP assays and correlation assay estimated that EIF4A3 could interacted with hsa_circ_0005397. Knockdown of EIF4A3 could reverse hsa_circ_0005397 function in HCC progression. CONCLUSIONS: Hsa_circ_0005397 promotes progression of hepatocellular carcinoma through EIF4A3. These research findings may provide novel clinical value for hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , RNA Circular/genética , RNA Circular/metabolismo , Regulação para Baixo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Fator de Iniciação 4A em Eucariotos/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , RNA Helicases DEAD-box/genética
3.
Mol Biol Rep ; 51(1): 140, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236447

RESUMO

BACKGROUND: Cyclic guanosine monophosphate (cGMP)-dependent protein kinase I (PKG-I), a serine/threonine kinase, is important in tumor development. The present study determines that the cGMP/PKG I pathway is essential for promoting cell proliferation and survival in human ovarian cancer cells, whereas cGMP analog has been shown to lead to growth inhibition and apoptosis of various cancer cells. The role of cGMP/PKG I pathway in epithelial ovarian cancer (EOC), therefore, remains controversial. We investigated the effect of cGMP/PKG I pathway and the underlying mechanism in EOC. METHODS AND RESULTS: The results showed that exogenous 8-Bromoguanosine-3', 5'-cyclic monophosphate (8-Br-cGMP) (cGMP analog) could antagonize the effects by EGF, including suppressing proliferation, invasion and migration of EOC cells. In vivo, 8-Br-cGMP hampered the growth of the xenograft tumor. Additionally, the expressions of epidermal growth factor receptor (EGFR), matrix metallopeptidase 9 (MMP9), proliferating cell nuclear antigen and Ki67 in xenograft tumor were decreased after 8-Br-cGMP intervention. Further research demonstrated that 8-Br-cGMP decreased the phosphorylation of EGFR (Y992) and downstream proteins phospholipase Cγ1 (PLC γ1) (Y783), calmodulin kinase II (T286) and inhibited cytoplasmic Ca2+ release as well as PKC transferring to cell membrane. It's worth noting that the inhibition was 8-Br-cGMP dose-dependent and 8-Br-cGMP showed similar inhibitory effect on EOC cells compared with U-73122, a specific inhibitor of PLC γ1. CONCLUSIONS: The activation of endogenous PKG I by addition of exogenous 8-Br-cGMP could inhibit EOC development probably via EGFR/PLCγ1 signaling pathway. 8-Br-cGMP/PKG I provide a new insight and strategy for EOC treatment.


Assuntos
GMP Cíclico/análogos & derivados , Neoplasias Ovarianas , Tionucleotídeos , Humanos , Feminino , Carcinoma Epitelial do Ovário , Fosfolipase C gama , Neoplasias Ovarianas/tratamento farmacológico , Receptores ErbB
4.
J Fungi (Basel) ; 9(12)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38132734

RESUMO

The influence of lithology and slope position on arbuscular mycorrhizal fungi (AMF) communities has been explored in various ecosystems, but there is a limited understanding of these mechanisms in karst regions. This study focused on typical karst hills with contrasting lithologies, specifically dolomite and limestone. Additionally, three slope positions (upper, middle, and lower) were investigated within each hill in karst forest ecosystems. Total phosphorus (TP) content in the soil was higher in dolomite compared to limestone. Conversely, exchangeable calcium (Ca) was lower in dolomite than in limestone. Notably, the lithology, rather than the slope position, exerted a significant impact on AMF diversity and abundance and the presence of specific AMF taxa. Dolomite exhibited greater AMF richness and a higher Shannon index in comparison to limestone when not accounting for slope position. The AMF community composition differed between dolomite and limestone. For instance, without considering slope position, the relative abundance of Acaulospora, Diversispora, and Paraglomus was higher in dolomite than in limestone, while the relative abundance of Claroideoglomus displayed an opposing trend. Furthermore, a more complex interaction among AMF taxa was observed in dolomite as compared to limestone, as evidenced by an increase in the number of nodes and edges in the co-occurrence networks within the dolomite. The genera Glomus, Claroideoglomus, and Diversispora exhibited a higher number of links with each other and with other AMF taxa. The study identified TP and Ca as the primary factors determining variations in AMF diversity between dolomite and limestone. Consequently, it is imperative to consider the underlying lithology and soil conditions when addressing the restoration of degraded karst hilly areas.

5.
Huan Jing Ke Xue ; 44(11): 6248-6256, 2023 Nov 08.
Artigo em Chinês | MEDLINE | ID: mdl-37973107

RESUMO

In field conditions, a micro-aerobic layer with 1 cm thickness exists on the surface layer of paddy soil owing to the diffusion of dissolved oxygen via flooding water. However, the particularity of carbon and nitrogen transformation in this specific soil layer is not clear. A typical subtropical paddy soil was collected and incubated with13C-labelled rice straw for 100 days. The responses of exogenous fresh organic carbon(13C-rice straw) and original soil organic carbon mineralization to nitrogen fertilizer addition[(NH4)2SO4]in the micro-aerobic layer(0-1 cm) and anaerobic layer(1-5 cm) of paddy soil and their microbial processes were analyzed based on the analysis of 13C incorporation into phospholipid fatty acid(13C-PLFAs). Nitrogen addition promoted the total CO2 and 13C-CO2 emission from paddy soil by 11.4% and 12.3%, respectively. At the end of incubation, with the addition of nitrogen, the total soil organic carbon (SOC) and13C-recovery rate from rice straw in the anaerobic layer were 2.4% and 9.2% lower than those in the corresponding micro-aerobic layer, respectively. At the early stage(5 days), nitrogen addition increased the total microbial PLFAs in the anaerobic layer with a consistent response of bacterial and fungal PLFAs. However, there was no significant effect from nitrogen on microbial abundance in the micro-aerobic layer. Nitrogen addition had no significant impact on the abundance of total 13C-PLFAs in the micro-aerobic and anaerobic layers, but the abundance of 13C-PLFAs for bacteria and fungi in the micro-aerobic layer was decreased dramatically. At the late stage(100 days), the effect of nitrogen addition on microbial PLFAs was consistent with that at the early stage. The abundances of total, bacterial, and fungal 13C-PLFAs were remarkably increased in the anaerobic layer. However, the abundance of 13C-PLFAs in the micro-aerobic layer showed no significant response to nitrogen addition. During the incubation, the content of NH4+-N in the anaerobic soil layer was higher than that in the micro-aerobic soil layer. This indicates that nitrogen addition increased microbial activity in the anaerobic soil layer caused by the higher NH4+-N concentration, as majority of microorganisms preferred to use NH4+-N. Consequently, the microbial utilization and decomposition of organic carbon in the anaerobic soil layer were accelerated. By contrast, richer available N existed in the form of NO3--N in the micro-aerobic soil layer owing to the ammoxidation process. Thus, the shortage of NO3--N preference microorganisms in the paddy soil environment prohibited the microbial metabolism of organic carbon in the micro-aerobic layer. As a whole, nitrogen fertilization enhanced organic carbon loss via microbial mineralization in paddy soil with a weaker effect in the micro-aerobic layer than that in the anaerobic layer, indicating the limited microbial metabolic activity in the surface micro-aerobic layer could protect the organic carbon stabilization in paddy soil. This study emphasizes the heterogeneity of paddy soil and its significant particularity of carbon and nitrogen transformation in micro-aerobic layers. Consequently, this study has implications for optimizing the forms and method for the application of nitrogen fertilizer in paddy cropping systems.


Assuntos
Oryza , Solo , Carbono/análise , Agricultura/métodos , Nitrogênio/análise , Fertilizantes/análise , Anaerobiose , Dióxido de Carbono/análise , Microbiologia do Solo , Bactérias
6.
Mol Neurobiol ; 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37989985

RESUMO

Whether epigenetic modifications participate in the cell apoptosis after ischemic stroke remains unclear. Histone 3 tri-methylation at lysine 27 (H3K27me3) is a histone modification that leads to gene silencing and is involved in the pathogenesis of ischemic stroke. Since the expression of many antiapoptotic genes is inhibited in the ischemic brains, here we aimed to offer an epigenetic solution to cell apoptosis after stroke by reversing H3K27me3 levels after ischemia. GSK-126, a specific inhibitor of enhancer of zeste homolog 2 (EZH2), significantly decreased H3K27me3 levels and inhibited middle cerebral artery occlusion (MCAO) induced and oxygen glucose deprivation (OGD) induced cell apoptosis. Moreover, GSK-126 attenuated the apoptosis caused by oxidative stress, excitotoxicity, and excessive inflammatory responses in vitro. The role of H3K27me3 in regulating of the expression of the antiapoptotic molecule B cell lymphoma-2 like 1 (Bcl2l1) explained the antiapoptotic effect of GSK-126. In conclusion, we found that GSK-126 could effectively protect brain cells from apoptosis after cerebral ischemia, and this role of GSK-126 is closely related to an axis that regulates Bcl2l1 expression, beginning with the regulation of EZH2-dependent H3K27me3 modification.

7.
Front Pharmacol ; 14: 1288883, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026996

RESUMO

Background: Ovarian cancer (OC) is the second most common gynecological malignancy and has a high mortality rate. The current chemotherapeutic drugs have the disadvantages of drug resistance and side effects. Myricetin, a kind of natural compound, has the advantages of easy extraction, low price, and fewer side effects. Multiple studies have demonstrated the anti-cancer properties of myricetin. However, its impact on OC is still unknown and needs further investigation. Therefore, this study aimed to elucidate the mechanism by which myricetin suppresses transforming growth factor-ß (TGF-ß) -induced epithelial-to-mesenchymal transition (EMT) in OC through in vivo and in vitro experiments. Methods: In vitro experiments were conducted to evaluate the effects of myricetin on cell proliferation and apoptosis using CCK8 assay, plate clonal formation assay, and flow cytometry. Western blot was employed to evaluate the expression levels of caspase-3, PARP, and the MAPK/ERK and PI3K/AKT signaling pathways. Wound healing, transwell, western blot and immunofluorescence assay were used to detect TGF-ß-induced cell migration, invasion, EMT and the levels of Smad3, MAPK/ERK, PI3K/AKT signaling pathways. Additionally, a mouse xenograft model was established to verify the effects of myricetin on OC in vivo. Results: Myricetin inhibited OC proliferation through MAPK/ERK and PI3K/AKT signaling pathways. Flow cytometry and western blot analyses demonstrated that myricetin promoted apoptosis by increasing the expression of cleaved-PARP and cleaved-caspase-3 and the ratio of Bax/Bcl-2 in OC. Furthermore, myricetin suppressed the TGF-ß-induced migration and invasion by transwell and wound healing assays. Mechanistically, western blot indicated that myricetin reversed TGF-ß-induced metastasis through Smad3, MAPK/ERK and PI3K/AKT signaling pathway. In vivo, myricetin significantly repressed OC progression and liver and lung metastasis. Conclusion: Myricetin exhibited inhibitory effects on OC progression and metastasis both in vivo and in vitro. And it also reversed TGF-ß-induced EMT through the classical and non-classical Smad signaling pathways.

8.
J. physiol. biochem ; 79(4): 685-693, nov. 2023.
Artigo em Inglês | IBECS | ID: ibc-227545

RESUMO

Neuronal death occurs in various physiological and pathological processes, and apoptosis, necrosis, and ferroptosis are three major forms of neuronal death. Neuronal apoptosis, necrosis, and ferroptosis are widely identified to involve the progress of stroke, Parkinson’s disease, and Alzheimer’s disease. A growing body of evidence has pointed out that neuronal death is tightly associated with expression of related genes and alteration of signaling molecules. In addition, recently, epigenetics has been increasingly focused on as a vital regulatory mechanism for neuronal apoptosis, necrosis, and ferroptosis, providing a new direction for treating nervous system diseases. Moreover, growing researches suggest that histone methylation or demethylation is involved in the processes of neuronal apoptosis, necrosis, and ferroptosis. These researches may imply that studying the potential roles of histone methylation is essential for treating the nervous system diseases. Here, we review potential roles of histone methylation and demethylation in neuronal death, which may give us a new direction in treating the nervous system diseases. (AU)


Assuntos
Humanos , Histonas , Doenças do Sistema Nervoso/patologia , Morte Celular/fisiologia , Metilação , Necrose
9.
J Physiol Biochem ; 79(4): 685-693, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37544979

RESUMO

Neuronal death occurs in various physiological and pathological processes, and apoptosis, necrosis, and ferroptosis are three major forms of neuronal death. Neuronal apoptosis, necrosis, and ferroptosis are widely identified to involve the progress of stroke, Parkinson's disease, and Alzheimer's disease. A growing body of evidence has pointed out that neuronal death is tightly associated with expression of related genes and alteration of signaling molecules. In addition, recently, epigenetics has been increasingly focused on as a vital regulatory mechanism for neuronal apoptosis, necrosis, and ferroptosis, providing a new direction for treating nervous system diseases. Moreover, growing researches suggest that histone methylation or demethylation is involved in the processes of neuronal apoptosis, necrosis, and ferroptosis. These researches may imply that studying the potential roles of histone methylation is essential for treating the nervous system diseases. Here, we review potential roles of histone methylation and demethylation in neuronal death, which may give us a new direction in treating the nervous system diseases.


Assuntos
Histonas , Doenças do Sistema Nervoso , Humanos , Metilação , Morte Celular/fisiologia , Necrose , Doenças do Sistema Nervoso/patologia
10.
Talanta ; 258: 124426, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36933295

RESUMO

Circulating tumor DNA (ctDNA) in blood carries genetic variations associated with tumors. There is evidence indicating that the abundance of single nucleotide variant (SNV) in ctDNA is correlated well with cancer progression and metastasis. Thus, accurate and quantitative detection of SNVs in ctDNA may benefit clinical practice. However, most current methods are unsuitable for the quantification of SNV in ctDNA that usually differentiates from wild-type DNA (wtDNA) only by a single base. In this setting, ligase chain reaction (LCR) coupled with mass spectrometry (MS) was developed to simultaneously quantify multiple SNVs using PIK3CA ctDNA as a model. Mass-tagged LCR probe set for each SNV including mass-tagged probe and three DNA probes was firstly designed and prepared. Then, LCR was initiated to discriminate SNVs specifically and amplify the signal of SNVs in ctDNA selectively. Afterward, a biotin-streptavidin reaction system was used to separate the amplified products, and photolysis was initiated to release mass tags. Finally, mass tags were monitored and quantified by MS. After optimizing conditions and verifying performance, this quantitative system was applied for blood samples from breast cancer patients, and risk stratification for breast cancer metastasis was also performed. This study is among the first to quantify multiple SNVs in ctDNA in a signal amplification and conversion manner, and also highlights the potential of SNV in ctDNA as a liquid biopsy marker to monitor cancer progression and metastasis.


Assuntos
Neoplasias da Mama , DNA Tumoral Circulante , Humanos , Feminino , Reação em Cadeia da Ligase , DNA Tumoral Circulante/genética , Neoplasias da Mama/patologia , Nucleotídeos , Classe I de Fosfatidilinositol 3-Quinases/genética , Biomarcadores Tumorais
11.
Animals (Basel) ; 13(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36830399

RESUMO

The present study investigated the effects of methionine (Met) on growth, immune function, and antioxidant capacity in partridge shank broilers, which were treated with either an anticoccidial drug or a coccidia vaccine. Chickens were fed five graded levels of Met (0.33%, 0.39%, 0.45%, 0.51%, or 0.57%) for 21 days in combination with the drug or vaccine. The results revealed that an optimal level of Met supplementation (1) increased ADFI (average daily feed intake), ADG (average daily gain), and F/G values (feed-to-gain ratio), indicating improved production; (2) increased OPG levels (oocysts per gram feces), intestinal lesion scores, bursa of Fabricius and thymus indexes, and sIgA content; (3) improved GSH-Px activities, and increased content levels of T-protein, albumin, and urea nitrogen. In addition, birds in the anticoccidial drug group had higher final weights, higher ADFI and ADG values, as well as lower F/G values, compared with birds in the vaccine group, indicating that coccidia vaccine reduces the performance of broilers. In conclusion, we found that an optimal level of dietary Met improved the production of partridge shank broilers, and this result might be related to immune function and antioxidant capacity. Optimal levels of digestible Met in terms of production performance (ADG and F/G) and immune function (sIgA in ileum mucosa) in partridge shank broilers (1-21 days) were found to be 0.418, 0.451, and 0.451 of diet, respectively, when birds were given anticoccidial drug treatment, with corresponding figures of 0.444, 0.455, and 0.452% when the coccidia vaccine was administered.

12.
Mol Biol Rep ; 50(3): 2545-2557, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36611117

RESUMO

BACKGROUND: Neuronal apoptosis is the main cause for the disabilities and deaths of patients suffered with stroke. Neuroprotectants are clinically used to reduce neuronal apoptosis in ischemic stroke. However, the current neuroprotectants have multiple limitations. Myricetin is beneficial for multiple neurodegenerative diseases, but the role of myricetin as a neuroprotective agent in ischemic stroke is still not fully understood. METHODS AND RESULTS: Middle cerebral artery occlusion, Terminal deoxynucleotidyl transferase dUTP nick-end labeling staining and Western blots were used to explore the anti-apoptotic effects of myricetin in vivo. Flow cytometry, Western blots and Ca2+ staining were used to study the neuroprotective effects of myricetin in vitro. In this study, we first demonstrated that myricetin reduced neuronal apoptosis after ischemia in vivo and in vitro. And, among the factors of apoptosis after ischemic stroke, excitotoxicity, oxidative stress and inflammation-induced apoptosis can be alleviated by myricetin. Moreover, we further demonstrated that myricetin was able to improve neuronal intrinsic apoptosis by inhibiting the phosphorylation of extracellular signal-regulated kinase in the oxygen and glucose deprivation in vitro. CONCLUSIONS: Summarily, our results support myricetin as a novel neuroprotectant for the prevention or treatment of ischemic stroke via MAPK-ERK signaling pathway.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Humanos , Sistema de Sinalização das MAP Quinases , Fármacos Neuroprotetores/farmacologia , Acidente Vascular Cerebral/tratamento farmacológico , Apoptose , Isquemia Encefálica/tratamento farmacológico
13.
Cell Death Dis ; 14(1): 39, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36653376

RESUMO

The type I cGMP-dependent protein kinase (PKG I) is recognized as a tumor suppressor, but its role in EGFR regulated epithelial ovarian cancer (EOC) progression remains unclear. We evaluated the in vivo and in vitro effects of activated PKG I in EGF-induced EOC cell proliferation, migration, and invasion. The expressions of EGFR and PKG I were elevated, but the activated PKG I was decreased in EOC tissues of patients and cells lines. The addition of 8-Br-cGMP, a specific PKG I activator, attenuated the EGF-induced EOC cell proliferation, migration, and invasion in vitro. Similarly, activated PKG I also attenuated EOC progression in vivo using an EOC xenograft nude mouse model. The activated PKG I interacted with EGFR, causing increased threonine (693) phosphorylation and decreased tyrosine (1068) phosphorylation of EGFR, which resulted in disrupted EGFR-SOS1-Grb2 combination. Subsequently, the cytoplasmic phosphorylation of downstream proteins (c-Raf, MEK1/2, and ERK1/2) were declined, impeding the phosphorylated ERK1/2's nucleus translocation, and this reduction of phosphorylated tyrosine (1068) EGFR and ERK1/2 were also abolished by Rp-8-Br-cGMPS. Our results suggest that the activation of PKG I attenuates EGF-induced EOC progression, and the 8-Br-cGMP-PKG I-EGFR/MEK/ERK axis might be a potential target for EOC therapy.


Assuntos
Sistema de Sinalização das MAP Quinases , Neoplasias Ovarianas , Feminino , Animais , Camundongos , Humanos , Fosforilação , Fator de Crescimento Epidérmico/farmacologia , Fator de Crescimento Epidérmico/metabolismo , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Receptores ErbB/metabolismo , Tirosina/metabolismo
14.
ACS Appl Mater Interfaces ; 14(49): 54517-54526, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36449938

RESUMO

The major challenge in the detection of protein homodimers is that the identical monomers in a homodimer are indistinguishable using most conventional methods and cannot be sequentially recognized. In this study, a steric hindrance on-off mass-tagged probe set strategy was developed for the quantification of HER2 homodimer in living cells. The probe set contained a hindrance probe and a detection probe. The hindrance probe had a DNA dendrimer as a hindrance group to achieve the steric hindrance on-off function and thus the assignment of monomer identity. The detection probe contained a mass tag released for mass spectrometric quantification. Using the steric hindrance on-off mass-tagged probe set, the level of HER2 homodimer in various breast cancer cell lines was quantified. This is the first report to determine the quantity of protein homodimers, and the steric hindrance on-off probe set developed herein can facilitate the illustration of protein function in cancer.


Assuntos
Células MCF-7 , Humanos
15.
J. physiol. biochem ; 78(1): 1-8, feb. 2022.
Artigo em Inglês | IBECS | ID: ibc-215868

RESUMO

Stroke, also known as cerebral stroke or cerebrovascular accident, refers to acute ischemic or hemorrhagic encephalopathy caused by a disturbance to cerebral blood flow. Ischemic stroke is the most common type of cerebral stroke, accounting for approximately 80% of the total incidence of clinical stroke. High morbidity, disability, and mortality rates place heavy burdens on the families of patients and society. An increasing number of studies have shown that histone modification plays an important role in the pathogenesis of ischemic stroke, but most studies on histone modification focus on acetylation, and studies on the role of histone methylation in the pathogenesis of ischemic stroke are limited. Here, we review the role of histone methylation and related histone methyltransferase (HMT) inhibitors in the pathogenesis of ischemic stroke and related HMT inhibitors in the treatment of ischemic stroke, which may open up a new avenue to the study of ischemic stroke. (AU)


Assuntos
Humanos , Isquemia Encefálica/patologia , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/genética , Histonas/metabolismo , Metilação , Modificação Traducional de Proteínas
16.
Mol Neurobiol ; 59(4): 2552-2562, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35091962

RESUMO

Epigenetics, including histone modifications, play a significant role in central nervous system diseases, but the underlying mechanism remains to be elucidated. The aim of this study was to evaluate the role of H3K27me3 in regulating transcriptomic and pathogenic mechanisms following global ischemic stroke. Here, we found that in vivo ischemic/reperfusion (I/R) injury induced marked upregulation of H3K27me3 in the hippocampus. The administration of GSK-126 to rat brains decreased the levels of H3K27me3 in the hippocampus and reduced neuronal apoptosis after experimental stroke. Furthermore, ChIP-seq data demonstrated that the primary role of GSK-126 in the ischemic brain is to reduce H3K27me3 enrichment, mediating negative regulation of the execution phase of apoptosis and the MAPK signaling pathway. Further study suggested that the protective role of GSK-126 in ischemic rats was antagonized by U0126, an inhibitor of ERK1/2. Collectively, we demonstrated the potential of H3K27me3 as a novel stroke therapeutic target, and GSK-126 exerted a neuroprotective function in ischemic brain injury, which might be associated with activation of the MAPK/ERK pathway.


Assuntos
Isquemia Encefálica , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Animais , Apoptose , Isquemia Encefálica/patologia , Infarto Cerebral/complicações , Histonas/metabolismo , Neurônios/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Ratos , Traumatismo por Reperfusão/patologia , Acidente Vascular Cerebral/metabolismo
17.
J Physiol Biochem ; 78(1): 1-8, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34472033

RESUMO

Stroke, also known as cerebral stroke or cerebrovascular accident, refers to acute ischemic or hemorrhagic encephalopathy caused by a disturbance to cerebral blood flow. Ischemic stroke is the most common type of cerebral stroke, accounting for approximately 80% of the total incidence of clinical stroke. High morbidity, disability, and mortality rates place heavy burdens on the families of patients and society. An increasing number of studies have shown that histone modification plays an important role in the pathogenesis of ischemic stroke, but most studies on histone modification focus on acetylation, and studies on the role of histone methylation in the pathogenesis of ischemic stroke are limited. Here, we review the role of histone methylation and related histone methyltransferase (HMT) inhibitors in the pathogenesis of ischemic stroke and related HMT inhibitors in the treatment of ischemic stroke, which may open up a new avenue to the study of ischemic stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Isquemia Encefálica/patologia , Histonas/metabolismo , Humanos , Metilação , Processamento de Proteína Pós-Traducional , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/genética
18.
Chem Sci ; 12(23): 7993-8009, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34257858

RESUMO

Precision medicine has been strongly promoted in recent years. It is used in clinical management for classifying diseases at the molecular level and for selecting the most appropriate drugs or treatments to maximize efficacy and minimize adverse effects. In precision medicine, an in-depth molecular understanding of diseases is of great importance. Therefore, in the last few years, much attention has been given to translating data generated at the molecular level into clinically relevant information. However, current developments in this field lack orderly implementation. For example, high-quality chemical research is not well integrated into clinical practice, especially in the early phase, leading to a lack of understanding in the clinic of the chemistry underlying diseases. In recent years, mass spectrometry (MS) has enabled significant innovations and advances in chemical research. As reported, this technique has shown promise in chemical mapping and profiling for answering "what", "where", "how many" and "whose" chemicals underlie the clinical phenotypes, which are assessed by biochemical profiling, MS imaging, molecular targeting and probing, biomarker grading disease classification, etc. These features can potentially enhance the precision of disease diagnosis, monitoring and treatment and thus further transform medicine. For instance, comprehensive MS-based biochemical profiling of ovarian tumors was performed, and the results revealed a number of molecular insights into the pathways and processes that drive ovarian cancer biology and the ways that these pathways are altered in correspondence with clinical phenotypes. Another study demonstrated that quantitative biomarker mapping can be predictive of responses to immunotherapy and of survival in the supposedly homogeneous group of breast cancer patients, allowing for stratification of patients. In this context, our article attempts to provide an overview of MS-based chemical mapping and profiling, and a perspective on their clinical utility to improve the molecular understanding of diseases for advancing precision medicine.

19.
J Mol Neurosci ; 71(3): 556-564, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32772228

RESUMO

GSK-126 is recognized as an inhibitor of enhancer of zeste homolog-2 (EZH2) activity. Because of its inhibition of EZH2 activation, GSK-126 is considered a potential anti-tumor drug. EZH2 is a histone methyltransferase that catalyzes histone 3 tri-methylation at lysine 27 (H3K27me3), resulting in gene silencing. A previous report showed that decreased H3K27me3 levels in the hippocampus may promote seizure susceptibility, possibly restricting the clinical application of GSK-126. The role of GSK-126 in seizure susceptibility was investigated in this study. We first determined a critical concentration of pentamethazol (PTZ) under which mice exhibit no seizures. We then found that mice pretreated with GSK-126 and injected with the same concentration of PTZ experienced marked convulsions. Peripheral injections of GSK-126 decreased H3K27me3 levels in the hippocampus of mice, while some seizure-related genes (Oasl1, Sox7, armcx5, Ncx3, etc.) were found to be differentially expressed in the hippocampus of those mice . These differences in the expression levels might reflect the crucial role of these genes and related pathways in the promotion of seizure susceptibility. Our results suggest that GSK-126 promotes seizure susceptibility due to its role as an EZH2 inhibitor. These findings may provide evidence to support the development of GSK-126 as a clinical drug.


Assuntos
Antineoplásicos/toxicidade , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Inibidores Enzimáticos/toxicidade , Indóis/toxicidade , Piridonas/toxicidade , Convulsões/etiologia , Animais , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Histonas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C
20.
Front Oncol ; 10: 1697, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33014844

RESUMO

Objectives: This study aims to investigate the diagnostic and prognostic values of EpCAM, TGM2, and HE4 in endometrial cancer (EC). Methods: In this study, 42 patients diagnosed with EC (EC group), 41 patients diagnosed with myoma (benign group), and 43 healthy women (healthy group), who applied to Affiliated Hospital of Xuzhou Medical University between March 2018 - September 2019 were recruited. Serum EpCAM, TGM2, and IL-33 levels were measured by ELISA, while serum HE4 and CA-125 levels were measured by ECLIA. The serum markers listed above were also measured in 12 paired pre- and post-operative EC patients. The diagnostic and prognostic values of serum markers were analyzed. Results: The serum EpCAM, TGM2, HE4, CA-125, and IL-33 levels were significantly higher in the EC group. The sensitivity and specificity of combined detection of EpCAM and HE4 was 92.86 and 69.05%, which were significantly higher than using a single marker or other combinations. Among these markers, serum HE4 levels were significantly higher in patients with myometrial invasion, metastasis, and lymphovascular invasion (p = 0.006, p = 0.0004, p = 0.0004, respectively). And serum TGM2 levels were significantly decreased in post-operative than that of pre-operative EC patients (p < 0.001). Conclusions: The combination of EpCAM and HE4 showed the highest specificity and sensitivity in the diagnosis of EC. HE4 was successful in the detection of high-risk individuals preoperatively. Additionally, TGM2 might be a prognostic factor for EC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...